全国站

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

资    源
  • 资    源
当前位置:查字典高考网>高中频道>竞赛联赛知识>关于圆的问题

关于圆的问题

来自:查字典高考网 2009-08-31

圆的有关问题是与直线型紧密结合在一起的,因而综合性强,富于变化.

圆的有关计算与证明

例1 (第3届全国部分省市初中数学通讯赛试题)圆内接八边形的四条边长为1,另四条边长为2.求此八边形的面积.

解 由弓形面积公式知所求的八边形的面积与八边形各边排列的顺序无关.

不妨设八边形ABCDEFGH如图35-1,且有

AB=CD=EF=GH=2,

BC=DE=FG=HA=1.

双向延长AH、BC、DE、FG得正方形KLMN.

故S八边形ABCDEFGH=S正方形KLMN-4S△ABK

=关于圆的问题2

关于圆的问题3

例2 (第19届全苏中学生竞赛题)在边长为1cm的正五边形,去掉所有与五边形各顶点距离都小于1cm的点,求余下部分的面积.

解 以A为圆心,1cm长为半径的扇形ABE内的点到点A的距离都小于1cm.分别以正五边形的各顶点为圆心,1cm长为半径作弧,以五段圆弧为边界的曲边五边形MNPQR内的点到正五边形ABCDE各顶点的距离小于1cm.五边形内余下的部分是五个等积的曲边三角形BMC、CND、DPE、EQA、ARB(如图35-2).

考察曲边三角形BMC与以BAM为圆心角(等于60)的扇形BAM的面积之和,恰等于等边三角形ABM与以CBM为圆心角(等于108-60=48)的扇形CBM的面积之和.

所以,所要求的面积为:

5S曲边△BMC

=5(S△ABM+S扇形CBM-S扇形BAM)

=5关于圆的问题4

=关于圆的问题5

关于圆的问题6

例3 (第22届国际数学竞赛题)三个全等的圆有一个公共点O,并且都在一个已知△ABC内.每个圆与△ABC的两边相切.求证:△ABC的内心、外心和O点共线.

证明 如图35-3,设三等圆为⊙A、⊙B和⊙C.故AB∥AB,BC∥BC,CA∥CA.于是△ABC∽△ABC.

由于三等圆分别与△ABC的两边相切,故AA、BB、CC相交于△ABC内心I.显然,I也是△ABC的内心.因此,△ABC的外心E,△ABC的外心E与I三点共线.

又O是三等圆的公共点,OA=OB=OC,因此O即是△ABC的外心E.故E,O、I三点共线.

关于圆的问题7

四点共圆

例4 (1980年哈尔滨初中数学竞赛题)如图35-4,在△ABC中,BD、CE为高,F、G分别为ED、BC的中点,O为外心,求证:AO∥FG.

证明 过A作⊙O的切线AT.

∵BD、CE为高,

B、C、D、E四点共圆.

TAC=ABC=ADE

AT∥ED.又AOAT,

AOED.

又∵G为BC中点,

DG=关于圆的问题8BC=EG.

而EF=DF,FGED.

故AO∥FG.

关于圆的问题9

例5(1990年全国初中数学竞赛题)已知在凸五边形ABCDE中,BAE=3a,BC=CD=DE,且BCO=CDE=180-2a,求证:BAC=CAD=DAE.

证明 连结BD、CE.

∵BC=CD=DE,

BCD=CDE,

△BCD≌△CDE.

又BCD=180-2a,

CBD=CDB

=DCE=DEC=a,

B、C、D、E四点共圆,且BC=CD=DE=2a.

BCDE=6a.又BAE=3a,

A、B、C、D、E共圆.

BAC=CAD=DAE=a.

关于圆的问题10

例6 (1988年广州等五市数学联赛题)如图35-6,AB为定圆O中的定弦,作⊙O的弦C1D1,C2D2,C1988D1988,对其中每一i(i=1,2,,1988),CiDi都被弦AB平分于Mi.过Ci、Di分别作⊙O的切线,两切线交于Pi.求证:点P1,P2,,P1988与某定点等距离,并指出这定点是什么点.

关于圆的问题11

证明 连OCi、ODi,对每个i(i=1,2,1988),

∵CiDi均被AB平分于Mi,

CiMiDiMi=AMiBMi. ①

又PiCi,PiDi分别切⊙O于Ci、Di,

故知O、Ci、Pi、Di共圆,且OPi通过CiDi的中点Mi.

CiMiDiMi=PiMiOMi. ②

由①、②得OMiMiPi=MiAMiB.

Pi和O、A、B共圆.

但O、A、B为定点,Pi和⊙OAB的圆心距离相等.

即点P1,P2,,P1988与定点等距离,这定点为⊙OAB的圆心.

例7若凸四边形两对角线的乘积等于它的两组对边乘积之和,则此四边形人接于圆.

证明如图35-7,在凸四边形ABCD中,设ACBD=ABCD+ADBC.(※)

作ECD=ACB,EBC=CAD,于是△BEC∽△ADC,

关于圆的问题12

关于圆的问题13

由①得BEAC=ADBC. ③

由②及2,可得△ABC∽△DCE.

4,关于圆的问题14

即 DEAC=ABDC ④

③+④即有

(BE+DE)AC=ADBC+ABDC. ⑤

比较⑤式与(※)式 得BE+DE=BD.

这说明,E在BD上,3与BDC重合.

BDC=BAC.故A、B、C、D四点共圆.

此例是托勒密逆定理.

关于圆的问题15

1. 杂题

例8(第1届美国数学邀请赛题)如图35-8,已知AD、BC是⊙O的两条相交的弦,且B在劣弧AD上,⊙O的半径为5,BC=6,AD被BC平分;又设从A出发的弦只有AD能被BC等分,这样可以知道AB劣弧对应的圆心角的正弦是一个有理数.如果把这个有理数化为最简分数关于圆的问题16,求mn.

关于圆的问题17

分析设AD、BC交于M,M为AD中点,则点M的轨迹是在A点与⊙O内切的半径为关于圆的问题18的⊙P,依题意BC与⊙P切于点M.

要求mn,须求sinAOB=关于圆的问题19,亦是求cosAOB之值.

作ONBC于N,连OB,则

BN=关于圆的问题20=3,ON=关于圆的问题21

作PQON于Q,连PM,则PQNM为矩形,故有QN=PM=OP

=关于圆的问题22AO=关于圆的问题23,

OQ=ON-QN=关于圆的问题24

MN=PQ

=关于圆的问题25

BM=BN-MN=1

BP=关于圆的问题26

在△POB中,由余弦定理,

cosAOB=关于圆的问题27

=关于圆的问题28

=关于圆的问题29,

sinAOB=关于圆的问题30

=关于圆的问题31

mn=725=175.

例9(1962年北京中学生数学竞赛题)任意剪六个圆形纸片放在桌面上,使得没有一个纸片的中心落在另一纸片上或被另一纸片盖住,然后用一枚针去世扎这一堆纸片.证明:不论针尖落在哪一点,总是不能一次把六个纸片全部扎中.

分析 这命题等价于:平面上有六个圆,每个圆心都在其余各圆的外部,证明平面上任意一点都不会同时在这六个圆内部.

证明 (反证法)如图35-9,设平面上有一点M同时在这六个圆内部,连结六个圆心:

关于圆的问题32

MO1,MO2,,MO6.

则O1MO2+O2MO3++O6MO1=360.

因此,至少有一个角不大于60,不妨设O1MO2,即60.

又,++=180则,中必有一个不小于60.不妨设60,则.

O1O2O1M<r1(r1为圆⊙O1的半径).

故O2在⊙O1内,这与题设矛盾,这就证明了M点不可能同时在六个圆的内部.

例10(第21届国际中学生数学竞赛题)如图35-10,平面上两圆相交,其中一交点为A.两动点各以匀速自A点出发在不同的圆周上同向移动,这两点移动一周后同时返回到A点.求证平面上有一定点P,它不论在何时皆和两动点等距离.

解设⊙O1与⊙O2相交于A和A并设两动点Q1和Q2分别在⊙O1和⊙O2上,使AO1Q1=AO2Q2.连Q1AQ2A.因为圆周角等于同弧所对圆心角的一半,故AAQ1=关于圆的问题33AO1Q1,AAQ2=AXQ2=-关于圆的问题34AO2Q2.

AAQ1+AAQ2=.即有Q1、B、Q2三点共线.

关于圆的问题35关于圆的问题36

过A点作MNAA分别交两圆于M、N,(如图35-11),设Q1和Q2表示两动点在任一时刻的位置.由圆内接四边形两对角互补可知MQ1A=AQ2N=关于圆的问题37

作Q1Q的中垂线,交MN于它的中点P,点P就是所求的定点.它显然和Q1,Q2等距离.

【关于圆的问题】相关文章:

希望杯”数学邀请赛培训题4

1999年河北省高中数学竞赛试题

第六届“希望杯”全国数学邀请赛高一第一试

高中数学联合竞赛模拟试题三

国际数学奥林匹克

全国大学生数学建模竞赛青睐诺为无线演示器

希望杯”数学邀请赛培训题4

“希望杯”数学邀请赛培训题1

抽屉原则

应用题

[标签:问题]

网友关注

谈“假课文”:语文不是历史但也要守住真底线

陕西高校2017年本科新增备案专业名单

西南大学2017年音乐类、舞蹈学艺术专业本科招生简章

新疆生产建设兵团高校2017年本科新增备案专业名单

工业和信息化部直属高校2017年撤销本科专业名单

2016年度普通高等学校新增审批本科专业名单

国家林业局直属高校2017年撤销本科专业名单

西藏高校2017年本科新增备案专业名单

广东一高校为防诺如病毒停课封校 感染源来自校外餐厅

陕西高校2017年撤销本科专业名单

福建高校2017年撤销本科专业名单

法学毕业生 为何就业难

云南高校2017年撤销本科专业名单

新疆高校2017年撤销本科专业名单

初三男生考入西安交大少年班 “一考免三考”保送研究生

全国奥赛集训队公布名单 湖北共计22人保送北大清华

甘肃高校2017年本科新增备案专业名单

同济大学2017年自主招生简章

宁夏高校2017年本科新增备案专业名单

教育部:2017年高校调整学位授予门类或修业年限专业名单

20所高校2017年新增儿科学专业

杀马特闯入大学直播大闹课堂拍搞怪视频博点击率

中国药科大学2017年自主招生报名时间3月22日

交通运输部直属高校2017年撤销本科专业名单

吉林高校2017年撤销本科专业名单

广东高校2017年撤销本科专业名单

广西高校2017年撤销本科专业名单

教育部直属高校2017年撤销本科专业名单

同济大学2017年自主招生报名时间:3月24日至4月5日

新疆高校2017年本科新增备案专业名单

网友关注视频

印度美术高考美术联考,考前培训班

2019全国高考志愿填报攻略 第50集 天津市高考历史三年本科录取排名

这!就是专业 第47集 江苏理工学院

高考帮:招办面对面 第55集 上海视觉艺术学院

探秘历史 第二季 第233集 考英语用来睡觉,结果仍是高考状元,如今她怎么样了?

这!就是专业 第15集 中国矿业大学——数学专业

爆笑班主任 第一季 第220集 高考前最后一只视频,山东王老师揭秘高考的秘密

你高考成绩高吗?这道题目怎能成立?高难度奥数,能不能把你难住

视频|2019全国高考今日开考: 语文特级教师评析上海卷高考作文

高中信息技术

最新高考数学全国2第12题视频讲解及答案

乾坤已定,组合解读2019高考数学全国3卷理科18题,你是黑马吗?

高中语文知识清单高考语文总複习工具书第5次修订五全綵版五三曲一线科学备考基础知识手册知识大集结资料书参考书导书高一高二高三

2019年高考数学全国2卷理科第4题讲解及答案

学渣男高考英语全写B,老师给老爸说成绩,老爸直接听懵了!

凤凰县高级中学高考试卷分析专题教研会

男孩考上理想大学,却因为网瘾休学在家,高中班主任上门劝导

高考政治一轮:《经济生活》第九课(社会主义市场经济)练习

【高考英语】七选五解析,不算太难

高级中学高考试卷分析专题教研评比活动

沈阳音乐学院郎亦农教授的女高音高考曲目解析课程 第9集 《赛吾里麦》演唱讲解,音乐表现一定要自然流畅

这!就是专业 第36集 河北经贸大学——数学专业

高考阅卷名师给考生的高考作文密训课 第5集 高考作文审题实操方法精讲(三)

张雪峰高考志愿填报指南 第15集 高考填报志愿,想学电子信息类专业,推荐报这六所高校,不出错

高考同学看过来,难度系数三颗星的奥数1

老外:外国理科高材生遇到中国数学高考,看到题目狂喊:NO!

小品:马云被宋小宝调侃当年数学高考考一分!

良心推荐:2019高考数学全国3卷理科12题讲解,附答案

如何制作100万层的酥皮糕点?推算过程像数学高考题

知道班里的高考成绩后,山东班主任气吐血了