全国站

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

资    源
  • 资    源
当前位置:查字典高考网>高中频道>竞赛联赛知识>竞赛专题讲座-平面几何四个重要定理

竞赛专题讲座-平面几何四个重要定理

来自:查字典高考网 2009-08-31

四个重要定理:

竞赛专题讲座-平面几何四个重要定理2梅涅劳斯(Menelaus)定理(梅氏线)

△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是 竞赛专题讲座-平面几何四个重要定理3

竞赛专题讲座-平面几何四个重要定理4塞瓦(Ceva)定理(塞瓦点)

△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是竞赛专题讲座-平面几何四个重要定理5

竞赛专题讲座-平面几何四个重要定理6

托勒密(Ptolemy)定理

四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。

竞赛专题讲座-平面几何四个重要定理7

西姆松(Simson)定理(西姆松线)

从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

例题:

1.  竞赛专题讲座-平面几何四个重要定理8设AD是△ABC的边BC上的中线,直线CF交AD于F。求证:竞赛专题讲座-平面几何四个重要定理9

【分析】CEF截△ABD竞赛专题讲座-平面几何四个重要定理10(梅氏定理)

【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。

2.  竞赛专题讲座-平面几何四个重要定理11过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。

求证:竞赛专题讲座-平面几何四个重要定理12

竞赛专题讲座-平面几何四个重要定理13【分析】连结并延长AG交BC于M,则M为BC的中点。

DEG截△ABM竞赛专题讲座-平面几何四个重要定理14(梅氏定理)

DGF截△ACM竞赛专题讲座-平面几何四个重要定理15(梅氏定理)

竞赛专题讲座-平面几何四个重要定理16=竞赛专题讲座-平面几何四个重要定理17=竞赛专题讲座-平面几何四个重要定理18=1

【评注】梅氏定理

竞赛专题讲座-平面几何四个重要定理19

3.  D、E、F分别在△ABC的BC、CA、AB边上,

竞赛专题讲座-平面几何四个重要定理20,AD、BE、CF交成△LMN。

求S△LMN。

【分析】

竞赛专题讲座-平面几何四个重要定理21

竞赛专题讲座-平面几何四个重要定理22【评注】梅氏定理

4.  以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。求证:AE、BF、CG相交于一点。

【分析】

竞赛专题讲座-平面几何四个重要定理23

【评注】塞瓦定理

5. 竞赛专题讲座-平面几何四个重要定理24已知△ABC中,B=2C。求证:AC2=AB2+ABBC。

【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则CD=DA=AB,AC=BD。

由托勒密定理,ACBD=ADBC+CDAB。

【评注】托勒密定理

竞赛专题讲座-平面几何四个重要定理25

6. 已知正七边形A1A2A3A4A5A6A7。

求证:竞赛专题讲座-平面几何四个重要定理26。(第21届全苏数学竞赛)

【分析】

竞赛专题讲座-平面几何四个重要定理27

【评注】托勒密定理

竞赛专题讲座-平面几何四个重要定理28

7. △ABC的BC边上的高AD的延长线交外接圆于P,作PEAB于E,延长ED交AC延长线于F。

求证:BCEF=BFCE+BECF。

【分析】

竞赛专题讲座-平面几何四个重要定理29

【评注】西姆松定理(西姆松线)

8. 竞赛专题讲座-平面几何四个重要定理30正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比为AM:AC=CN:CE=k,且B、M、N共线。求k。(23-IMO-5)

【分析】

【评注】面积法

9. 竞赛专题讲座-平面几何四个重要定理31O为△ABC内一点,分别以da、db、dc表示O到BC、CA、AB的距离,以Ra、Rb、Rc表示O到A、B、C的距离。

求证:(1)aRabdb+cdc;

(2) aRacdb+bdc;

(3) Ra+Rb+Rc2(da+db+dc)。

竞赛专题讲座-平面几何四个重要定理32【分析】

竞赛专题讲座-平面几何四个重要定理33【评注】面积法

10.△ABC中,H、G、O分别为垂心、重心、外心。

求证:H、G、O三点共线,且HG=2GO。(欧拉线)

【分析】

竞赛专题讲座-平面几何四个重要定理34

【评注】同一法

竞赛专题讲座-平面几何四个重要定理35

11.△ABC中,AB=AC,ADBC于D,BM、BN三等分ABC,与AD相交于M、N,延长CM交AB于E。

求证:MB//NE。

【分析】

竞赛专题讲座-平面几何四个重要定理36

【评注】对称变换

12.竞赛专题讲座-平面几何四个重要定理37G是△ABC的重心,以AG为弦作圆切BG于G,延长CG交圆于D。求证:AG2=GCGD。

【分析】

竞赛专题讲座-平面几何四个重要定理38

【评注】平移变换

13.竞赛专题讲座-平面几何四个重要定理39C是直径AB=2的⊙O上一点,P在△ABC内,若PA+PB+PC的最小值是竞赛专题讲座-平面几何四个重要定理40,求此时△ABC的面积S。

【分析】

竞赛专题讲座-平面几何四个重要定理41

【评注】旋转变换

费马点竞赛专题讲座-平面几何四个重要定理42:已知O是△ABC内一点,AOB=BOC=COA=120;P是△ABC内任一点,求证:PA+PB+PCOA+OB+OC。(O为费马点)

【分析】将C竞赛专题讲座-平面几何四个重要定理43C,O竞赛专题讲座-平面几何四个重要定理44O, P竞赛专题讲座-平面几何四个重要定理45P,连结OO、PP。则△B OO、△B PP都是正三角形。

OO=OB,PP =PB。显然△BOC≌△BOC,△BPC≌△BPC。

由于BOC=BOC=120=180BOO,A、O、O、C四点共线。

AP+PP+PCAC=AO+OO+OC,即PA+PB+PCOA+OB+OC。

竞赛专题讲座-平面几何四个重要定理4614.(95全国竞赛) 菱形ABCD的内切圆O与各边分别交于E、F、G、H,在弧EF和弧GH上分别作⊙O的切线交AB、BC、CD、DA分别于M、N、P、Q。 

求证:MQ//NP。

竞赛专题讲座-平面几何四个重要定理47【分析】由AB∥CD知:要证MQ∥NP,只需证AMQ=CPN,

结合C知,只需证

△AMQ∽△CPN

竞赛专题讲座-平面几何四个重要定理48,AMCN=AQCP。

连结AC、BD,其交点为内切圆心O。设MN与⊙O切于K,连结OE、OM、OK、ON、OF。记ABO=,MOK=,KON=,则

EOM=,FON=,EOF=2+2=180。

BON=90NOF-COF=90-=

CNO=NBO+NOB=+=AOE+MOE=AOM

又OCN=MAO,△OCN∽△MAO,于是竞赛专题讲座-平面几何四个重要定理49

AMCN=AOCO

同理,AQCP=AOCO。

竞赛专题讲座-平面几何四个重要定理50

【评注】

15.(96全国竞赛)⊙O1和⊙O2与ABC的三边所在直线都相切,E、F、G、H为切点,EG、FH的延长线交于P。求证:PABC。

【分析】

竞赛专题讲座-平面几何四个重要定理51

竞赛专题讲座-平面几何四个重要定理52【评注】

16.(99全国竞赛)如图,在四边形ABCD中,对角线AC平分BAD。在CD上取一点E,BE与AC相交于F,延长DF交BC于G。求证:GAC=EAC。

竞赛专题讲座-平面几何四个重要定理53证明:连结BD交AC于H。对△BCD用塞瓦定理,可得竞赛专题讲座-平面几何四个重要定理54

因为AH是BAD的角平分线,由角平分线定理,

可得竞赛专题讲座-平面几何四个重要定理55,故竞赛专题讲座-平面几何四个重要定理56

过C作AB的平行线交AG的延长线于I,过C作AD的平行线交AE的延长线于J。

竞赛专题讲座-平面几何四个重要定理57

所以竞赛专题讲座-平面几何四个重要定理58,从而CI=CJ。

又因为CI//AB,CJ//AD,故ACI=BAC=DAC=ACJ。

因此,△ACI≌△ACJ,从而IAC=JAC,即GAC=EAC。

竞赛专题讲座-平面几何四个重要定理59已知AB=AD,BC=DC,AC与BD交于O,过O的任意两条直线EF和GH与四边形ABCD的四边交于E、F、G、H。连结GF、EH,分别交BD于M、N。求证:OM=ON。(5届CMO)

证明:作△EOH竞赛专题讲座-平面几何四个重要定理60△EOH,则只需证E、M、H共线,即EH、BO、GF三线共点。

记BOG=,GOE=。连结EF交BO于K。只需证竞赛专题讲座-平面几何四个重要定理61=1(Ceva逆定理)。

竞赛专题讲座-平面几何四个重要定理62=竞赛专题讲座-平面几何四个重要定理63=竞赛专题讲座-平面几何四个重要定理64=1

注:筝形:一条对角线垂直平分另一条对角线的四边形。

竞赛专题讲座-平面几何四个重要定理65对应于99联赛2:EOB=FOB,且EH、GF、BO三线共点。求证:GOB=HOB。

事实上,上述条件是充要条件,且M在OB延长线上时结论仍然成立。

证明方法为:同一法。

蝴蝶定理:P是⊙O的弦AB的中点,过P点引⊙O的两弦CD、EF,连结DE交AB于M,连结CF交AB于N。求证:MP=NP。

竞赛专题讲座-平面几何四个重要定理66

【分析】设GH为过P的直径,F竞赛专题讲座-平面几何四个重要定理67FF,显然⊙O。又PGH,PF=PF。∵PF竞赛专题讲座-平面几何四个重要定理68PF,PA竞赛专题讲座-平面几何四个重要定理69PB,FPN=FPM,PF=PF。

又FFGH,ANGH,FF∥AB。FPM+MDF=FPN+EDF

=EFF+EDF=180,P、M、D、F四点共圆。PFM=PDE=PFN。

△PFN≌△PFM,PN=PM。

【评注】一般结论为:已知半径为R的⊙O内一弦AB上的一点P,过P作两条相交弦CD、EF,连CF、ED交AB于M、N,已知OP=r,P到AB中点的距离为a,则竞赛专题讲座-平面几何四个重要定理70。(解析法证明:利用二次曲线系知识)

【竞赛专题讲座-平面几何四个重要定理】相关文章:

抽屉原则

几个重要不等式(一)

关于圆的问题

第三届北京高中数学知识应用竞赛试题

2001年北京市初中二年级初赛试题及参考答案

初中数学竞赛大纲(修订稿)

简单的线性规划问题

1999中国数学奥林匹克(北京)(第十四届全国中学生数学冬令营)

第二届丘成桐中学数学奖启动

澳华裔少年夺两枚国际奥赛金牌

[标签:定理,几何,几何问题,讲座]

网友关注

北京教育考试院:07年高考难度将与去年持平

高考试题变脸名师支招应考 教师表示无须担忧

北京构建高校助学和公共服务体系

教育部考试中心副主任应书增谈07年新课标高考大纲(1)

高考网报明晚10时结束 报名者呈现三多特点

深圳:高考报名将开始 报名时间3月6日-9日

北京高考网报基本顺畅 报名人数有望创新高

2007年新课程标准生物科考试大纲

建立培养跟踪机制 上海商学院探索本科培养新招

06年与07年高考化学考纲对比

北京:高考今起开始网上报名 将于1月10日结束

2007上海春考语文卷语言表达题解析

06年与07年高考地理考纲对比

南昌航空工业学院申报更名南昌航空大学

06年与07年高考语文考纲对比

教育部酝酿高考改革 考虑变一次考试为多次考试

2006年高考北京卷考试说明(语文)

2007年新课程标准地理科考试大纲

北京市属高校助学金制度年内出台

2006年高考北京卷考试说明(理综):化学

北京1月高考日历:高考报名最受关注

黄冈中学的失意是不是应试教育的坍塌

2006年高考北京卷考试说明(英语)

北京2007年高考报名人数多于去年

2007年全国实验省区普通高考物理《考试大纲》研读

2007年新课标高考方案出台 新大纲呈三大亮点

教育部考试中心发公告:警惕高考培训虚假宣传

2007年新课程标准历史科考试大纲

教育部将以大学生培养成本核定高校学费标准

2007年中国民航大学乘务学院在全国招生600人

网友关注视频

2019高考语文试卷解析

这!就是专业 第36集 河北经贸大学——数学专业

老师好:这大概是高考前所有班主任都会干的事,取消一切副课!

最新高考数学全国2第12题视频讲解及答案

高考帮:这!就是专业 第8集 安徽师范大学

张雪峰高考志愿填报指南 第47集 高考志愿,令人头疼的数学系,才是专业万金油,毕业后机会多

看懂图片,你也会做高考地理题,解析2019年高考文综地理4

招办面对面 第76集 阜阳师范学院信息工程学院

这!就是专业 第15集 中国矿业大学——数学专业

高中数学必修5 高考数列选填真题技巧秒杀讲解

葛军大爷怒了:高考我出了个小学数学送分题,你们跟我说不会做?

高考阅卷名师给考生的高考作文密训课 第3集 高考作文审题实操方法精讲(一)

这!就是专业 第47集 江苏理工学院

探秘历史 第二季 第211集 此人高考数学考了0分,因作文写3句话被重点大学录取

他高考作文仅得6分,总分428分,被985高校录取,却被导师拒绝!

2019 广西:帅气学霸高考730分 数学英语满分!

高考作文:全国2卷 材料作文破题分析 2019高考助力

新闻早报 2019 高考前最后一课 合唱送给班主任

张雪峰高考志愿填报指南 第15集 高考填报志愿,想学电子信息类专业,推荐报这六所高校,不出错

视频|2019全国高考今日开考: 语文特级教师评析上海卷高考作文

你高考成绩高吗?这道题目怎能成立?高难度奥数,能不能把你难住

2019高考数学第四题技巧秒出答案

高考政治一轮:《经济生活》第九课(社会主义市场经济)练习

探秘历史 第二季 第233集 考英语用来睡觉,结果仍是高考状元,如今她怎么样了?

视频|上海高考作文: 寻找“中国味” 专家

2019高考语文全国2卷小说阅读解析

老马讲高考真题第九季2018年高考地理新课标一卷第37题

优秀!英语数学双满分,广西“最牛”高考状元730分刷新最高纪录

美术联考用纸上海考试模拟试卷纸高考统考纸 4k水粉纸素描纸 速写纸卡纸美术模拟测试试卷纸 美术考试专用纸

盘点今年最难的高考数学题