全国站

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

资    源
  • 资    源
当前位置:查字典高考网>高考总复习>备考策略>08高考数学复习:平面向量解题要点与实际应用

08高考数学复习:平面向量解题要点与实际应用

来自:查字典高考网 2008-01-31

我给学生提出了“三大线索,两大技巧”的复习重点。三大线索即:向量形式、坐标形式、几何意义。两大技巧为:抓“基底”、升次数。

天津一中贾鲁津

平面向量这一章内容本身兼有代数、几何双重特点,而又完全有别于学生多年来数学学习中所接触到的代数运算和几何证明,因此,多数同学对本章问题感到既抓不住重点,也找不到规律,因此很困惑,甚者发憷。比较近几年数学高考试卷中的平面向量题目,不难发现其中的几个突出变化:1.相关知识点覆盖面越来越全;2.与其他章节知识的交汇越来越多样,也越来越深入;3.题目所在档次有所提高,拿到相关分数的难度越来越大。如此,就增加了学生备考的难度。在顺利完成基本概念和基本运算复习的基础上,我给学生提出了“三大线索,两大技巧”的复习重点。三大线索即:向量形式、坐标形式、几何意义。两大技巧为:抓“基底”、升次数。下面就以向量与其他章节的综合为主线,和同学们一起回顾一下主要内容及其应用。

一、基本计算类:

1.已知-=(1,2),-=(-3,2),若(k-+-)⊥(--3-)则k=_______,

若(k-+-)//(--3-),则k=____

答案:19,--。公式基本应用,无需解释。

2.已知向量-=(cos,sin),向量-=(2-,-1)则|3---|的最大值为解:(3a-b)2=(3cosθ-2-,3sinθ+1)(3cosθ-2-,3sinθ+1)

=(3cosθ-2-)2+(3sinθ+1)2

=9cos2θ-12-cosθ+8+9sin2θ+1+6sinθ

=18+6sinθ-12-cosθ

≤18+-=18+18=36

∴|3a-b|max=6

点评:本题虽然是道小的综合题,但是向量中的升次技巧还是十分突出的,“见模平方”已是很多老师介绍给同学的一大法宝。不过升次的另外一种途径,就是同时点乘向量。

二、向量与三角知识综合:

3.设-=(1+cos,sin),-=(1-cos,sin),-=(1,0),∈(0,),∈(,2)-,-的夹角为θ1,-,-的夹角为θ2,且θ1-θ2=-,求sin-的值。

解:-·■=1+cos

-·■=1-cos

|-|2=2+2cos=4cos2-|-|2=2-2cos=4sin2-|-|=1

∵-∈(0,-)-∈(-,)

∴|-|=2cos-|-|=2sin-

又-·■=|-||-|cosθ1

∴1+cos=2cos-cosθ1

2cos2-=2cos-·cosθ1

∴cosθ1=cos-∴θ1=-

同理-·■=|-||-|cosθ2

∴sin-=cosθ2

∴cos(---)=cosθ2

∴---=θ2

∴θ1-θ2=-+-=-

∴-=--

∴sin-=--

三、向量与函数、不等式知识综合:

4.已知平面向量-=(-,1),-=(-,-),若存在不同时为零的实数k,t,使-=-+(t2-3)-,-=-k-+t-,且-⊥-.(1)试求函数关系式k=f(t);(2)求使f(t)0的t的取值范围.

解:(1)由题知-·■=0,|-|2=4|-|2=1

-·■=-k-2+t-·■+t(t3-3)-2-k(t2-3)-·■=-4k+t(t2-3)=0

∴k=-(t3-3t)即f(t)=-(t3-3t)

(2)f’(t)=-(3t2-3)=-(t2-1)

-

令f(t)=0∴t1=0t2=--t3=-

由图可知

t∈(--,0)∪(-,+∞)

四、用向量的知识解决三角形四边形中的问题。(与平面几何的交汇是近几年考试的热点)

温馨提示:据以下问题,同学们可以归纳一些常见结论,如与内心、外心、垂心、重心、中线、角分线、高线、共线、垂直等相关的结论。

5.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足-=-+(-+-)·∈(0,+∞)。则P的轨迹一定通过△ABC的()

A.外心B.内心

C.重心D.垂心

答案:B

6.设平面内有四个互异的点A,B,C,D,已知(---)与(-+--2-)的内积等于零,则△ABC的形状为()

(A)直角三角形

(B)等腰三角形

(C)等腰直角三角形

(D)等边三角形

答案:B

解:-+--2-=(---)+(---)=-+-

又---=-

∴-·(-+-)=0

∴等腰三角形

7.已知-A=-,-C=-,-C=-且满足(---)·■=0(0),则△ABC为()

A.等边三角形B.等腰三角形

C.直角三角形D.不确定

解:式子的含义就是角分线与高线合一。故选B。

8.若平面四边形ABCD满足-+-=-,(---)·■=0,则该四边形一定是

A.直角梯形B.矩形

C.菱形D.正方形

答案为C。第一个条件告诉我们这是平行四边形,而第二个条件则说明对角线互相垂直。

五、向量与解析几何的综合:

9.设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若-+-+-=0,

解:由-+-+-=0可知,F为三角形ABC的重心,故xg=-,而|-|+|-|+|-|=xA+xB+xC+3-故原式值为6。

10.已知A、B、D三点不在一条直线上,且A(-2,0),B(2,0)|-|=2,-=-(-+-)求E点的轨迹方程;

解:(1)设E(x,y),-=-+-,则四边形ABCD为平行四边形,而-=-(-+-)E为AC的中点

∴OE为△ABD的中位线

∴|-|=-|-|=1

∴E点的轨迹方程是:x2+y2=1(y≠0)

点评:本题正是关注了向量几何意义得以实现运算简化。

11.设椭圆方程为x2+-=1,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足-=-(-+-),点N的坐标为(-,-),当l绕点M旋转时,求:

(1)动点P的轨迹方程;

(2)|-|的最小值与最大值.

(1)解:设点P的坐标为(x,y),因A(x1,y1)、B(x2,y2)在椭圆上,所以x12+-=1④x22+-=1⑤

④—⑤得x12-x22+-(y12-y22)=0,所以(x1-x2)(x1+x2)+-(y1-y2)(y1+y2)=0

当x1≠x2时,有x1+x2+-(y1+y2)·■=0⑥

-

将⑦代入⑥并整理得4x2+y2-y=0⑧

当x1=x2时,点A、B的坐标为(0,2)、(0,-2),这时点P的坐标为(0,0)

也满足⑧,所以点P的轨迹方程为-+-=1

(2)解:由点P的轨迹方程知x2≤-,即--≤x≤-。

所以|-|2=(x--)2+(y--)2=(x--)2+--4x2=-3(x+-)2+-……10分

故当x=-,|-|取得最小值,最小值为-;当x=--时,|-|取得最大值,

最大值为-。

点评:本题突出向量的坐标运算与解析几何求轨迹方法的结合,以及二次函数求最值问题。

12.在△ABC中,-=-,-=-又E点在BC边上,且满足3-=2-,以A,B为焦点的双曲线过C,E两点,(1)求此双曲线方程,(2)设P是此双曲线上任意一点,过A点作APB的平分线的垂线,垂足为M,求M点轨迹方程。

解:本题只解第一问,在这里向量的应用是很有新意的。

(1)以线段AB中点O为原点,直线AB为x轴建立直角坐标系,设A(-1,0)B(1,0)作CO⊥AB于D

由已知-=-

∴|-|cosA=-

∴|-|=-

又同理-=-

∴|-|=-

设双曲线---=1(a0,b0)C(--,h)E(x1,y1)

∵3-=2-

-

E,C在双曲线上

-

∴双曲线为7x2--y2=1

【08高考数学复习:平面向量解题要点与实际应用】相关文章:

高考状元数学学习突破四法

2008年高考复习备考历

高三学习方法概论

高三女生比学习更重要的是什么?

高一新生如何顺利度过高中数学学习适应期

高三数学复习最有效的方法

2007年高考过来人讲述:40条最重要的经验格言

名师支招:寒假数学复习需过“五关”

高三数学复习最有效的方法

高考复习指导:狂补弱势科目的方法

[标签:高考,复习,平面向量,数学]

网友关注

长春工业大学2010年艺术类专业招生简章(吉林省)

2011年对外经济贸易大学艺术特长生招生简章

2011年清华大学艺术特长生招生简章

2011年南京师范大学艺术特长生招生简章(音乐类)

2011年复旦大学艺术特长生招生简章

2011年天津大学艺术特长生招生简章

2011年电子科技大学艺术特长生招生简章

2011年北京大学艺术特长生招生简章

2011年北京师范大学艺术特长生招生简章

2011年北京林业大学艺术特长生招生简章

2011年浙江省普通高校美术类专业统考报考简章

西安交通大学2011年文艺特长生招生简章

广西师范大学2010年艺术类专业招生简章

南京财经大学2010年艺术特长生招生简章

桂林电子科技大学2010年艺术考试安排

2011年华东师范大学艺术特长生招生简章

桂林电子科技大学2010年艺术类专业招生简章

南京信息工程大学2010年艺术类招生简章

南京财经大学2010年艺术类专业招生简章

西安建筑科技大学2010年美术类专业招生简章

广西师范大学2010年艺术类招生简章汇总

2011年南京大学艺术特长生招生简章

安阳师范学院2010年艺术类专业招生简章(外省)

广东外语外贸大学2010年艺术类专业招生简章

广西师范大学美术学院2010年招生简章

北京电影学院2010年招生简章汇总

河南工业大学2010年艺术招生简章

2011年北京师范大学艺术类本科招生简章

2011年同济大学艺术特长生招生简章

山东工艺美术学院2010年招生专业以及报名考试时间、科目

网友关注视频

知道班里的高考成绩后,山东班主任气吐血了

amc传媒音乐影像 第一季 第600集 高中校长演唱《记忆花园》为高考学子助力打气

爆笑班主任 第一季 第221集 高考结束学生有多疯狂?山东王老师疯狂吐槽

体育生参加高考,太猛了,第一名是飞起来了吗?

这四首励志歌曲,送给为梦起航的高考学子们,听完心潮澎湃!

【姜浩张超画室】

这!就是专业 第15集 中国矿业大学——数学专业

星闻乐坊 第1272集 张杰的一首歌成了高考神曲

励志歌曲《阳光总在风雨后》送给高考的莘莘学子,祝金榜题名!

【高考英语】七选五解析,不算太难

2019高考语文试卷解析

初二辍学,3次高考落榜,如今却成为最成功的音乐人之一

高中语文知识清单高考语文总複习工具书第5次修订五全綵版五三曲一线科学备考基础知识手册知识大集结资料书参考书导书高一高二高三

这!就是专业 第47集 江苏理工学院

2019高考数学全国2卷理科第16题视频讲解及答案

高中数学必修5 高考数列选填真题技巧秒杀讲解

评测今年的高考语文卷

探秘历史 第二季 第233集 考英语用来睡觉,结果仍是高考状元,如今她怎么样了?

探秘历史 第二季 第211集 此人高考数学考了0分,因作文写3句话被重点大学录取

视频|2019全国高考今日开考: 语文特级教师评析上海卷高考作文

amc传媒音乐影像 第一季 第598集 西安原创乐队走进英泰青卓 用音乐助力高考学子

小品:马云被宋小宝调侃当年数学高考考一分!

高中数学 107 高考如何秒杀数列

高中信息技术

新闻早报 2019 高考前最后一课 合唱送给班主任

如何制作100万层的酥皮糕点?推算过程像数学高考题

你高考成绩高吗?这道题目怎能成立?高难度奥数,能不能把你难住

张雪峰高考志愿填报指南 第28集 高考志愿分析,材料科学与工程专业,就业很一般,建议慎重选择

NBA流言收割机 第6集 神预测?高考数学试题暗示猛龙勇士4

高考体育四项生的日常训练——深蹲移动跳:发展膝关节,踝关节力量。