全国站

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

资    源
  • 资    源
当前位置:查字典高考网>高中频道>高二数学复习方法>数学指导:判断充分与必要条件的常用方法

数学指导:判断充分与必要条件的常用方法

来自:查字典高考网 2012-02-22

充分条件与必要条件是高中阶段非常重要的数学概念,它涉及知识范围广,综合性强,能与高中任何知识相结合,有一定的深度与难度,此类题目能有力地考查学生的逻辑思维能力.那么我们如何把握和解决此类问题呢?

一、 定义法

对于?圯,可以简单的记为箭头所指为必要,箭尾所指为充分.在解答此类题目时,利用定义直接推导,一定要抓住命题的条件和结论的四种关系的定义.

例1 已知p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有两个小于1的正根,试分析p是q的什么条件?

分析 条件p确定了m,n的范围,结论q则明确了方程的根的特点,且m,n作为系数,因此理应联想到根与系数的关系,然后再进一步化简.

解 设x1,x2是方程x2+mx+n=0的两个小于1的正根,即0<x1<1,0<x2<1,则0<x1+x2<2,0<x1?x2<1,依韦达定理,则有0<-m<2,0<n<1,从而q?圯p.

而对于满足条件p的m=-1,n=,方程x2-x+=0并无实根,所以pq.

综上,可知p是q的必要但不充分条件.

点评 解决条件判断问题时,务必分清谁是条件,谁是结论,然后既要尝试由条件能否推出结论,也要尝试由结论能否推出条件,这样才能明确做出充分性与必要性的判断.

二、 集合法

如果将命题p,q分别看作两个集合A与B,用集合意识解释条件,则有:①若A?哿B,则xA是xB的充分条件,xB是xA的必要条件;②若A?芴B,则xA是xB的充分不必要条件,xB是xA的必要不充分条件;③若A=B,则xA和xB互为充要条件;④若A?芫B且A?芸B,则xA和xB互为既不充分也不必要条件.

例2 设x,yR,则x2+y2<2是|x|+|y|的()条件,是|x|+|y|<2的()条件.

A. 充要条件 B. 既非充分也非必要条件

C. 必要不充分条件?摇D. 充分不必要条件

解 如右图所示,平面区域P={(x,y)|x2+y2<2}表示圆内部分(不含边界);平面区域Q={(x,y)||x|+|y|}表示小正方形内部分(含边界);平面区域M={(x,y)||x|+|y|<2}表示大正方形内部分(不含边界).

由于(,0)?埸P,但(,0)Q,则P?芸Q.又P?芫Q,于是x2+y2<2是|x|+|y|的既非充分也非必要条件,故选B.

同理P?芴M,于是x2+y2<2是|x|+|y|<2的充分不必要条件,故选D.

点评 由数想形,以形辅数,这种解法正是数形结合思想在解题中的有力体现.数形结合不仅能够拓宽我们的解题思路,而且也能够提高我们的解题能力.

三、 逆否法

利用互为逆否命题的等价关系,应用正难则反的数学思想,将判断p?圯q转化为判断非q?圯非p的真假.

例3 (1)判断p:x3且y2是q:x+y5的什么条件;

(2) 判断p:x3或y2是q:x+y5的什么条件.

解 (1)原命题等价于判断非q:x+y=5是非p:x=3或y=2的什么条件.

显然非p非q,非q非p,故p是q的既不充分也不必要条件.

(2) 原命题等价于判断非q:x+y=5是非p:x=3且y=2的什么条件.

因为非p?圯非q,但非q非p,故p是q的必要不充分条件.

点评 当命题含有否定词时,可考虑通过逆否命题等价转化判断.

四、 筛选法

用特殊值、举反例进行验证,做出判断,从而简化解题过程.这种方法尤其适合于解选择题.

例4 方程ax2+2x+1=0至少有一个负实根的充要条件是()

A. 0<a1 B. a<1 C. a1 D. 0<a1

解 利用特殊值验证:当a=0时,x=-,排除A,D;当a=1时,x=-1,排除B.因此选C.

点评 作为选择题,利用筛选法避免了复杂的逻辑推理过程,使解题方法更加优化,节省了时间,提高了解题的速度,因此同学们应该注意解题方法的选择使用.

五、 传递法

充分条件与必要条件具有传递性,即由P1?圯P2,P2?圯P3,,Pn-1?圯Pn,可得P1?圯Pn .同样,充要条件也有传递性.对于比较复杂的具有一定连锁关系的条件,两个条件间关系的判断也可用传递法来加以处理.

例5 已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么p是q的()

A. 充分不必要条件 B. 必要不充分条件

C. 充要条件 D. 既不充分也不必要条件

解 由题意可得p?圯r,r?圯s,s?圯q,那么可得p?圯r?圯s?圯q,即p是q的充分不必要条件,故选A.

点评 对于两个以上的较复杂的连锁式条件,利用传递性结合符号?圯与,画出它们之间的关系结构图进行判断,可以直观快捷地处理问题,使问题得以简单化.

1. 求三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根的充要条件.

1. 三个方程均无实根的充要条件是

1=16a2-4(-4a+3)<0,2=(a-1)2-4a2<0,3=4a2-4(-2a)<0,解得-<a<-1,故至少有一个方程有实根的充要条件是a|a-1或a-.

【数学指导:判断充分与必要条件的常用方法】相关文章:

专题辅导:高二数学“充要条件”具体概念

高二数学:概率易出现的四类混淆

高二数学期中复习题(第一学年)

高二数学趣味学习:整数与偶数哪一种数多?

高二数学必修五《数列的概念与简单表示法》知识点总结

高中数学常用解题思想之数形结合思想方法

方法指导:高中数学解题方法之数学归纳法

高二学好数学概念的六个方法

理解“充要条件”具体概念

数学专题辅导:随机事件概率的几种常见模型

[标签:数学]

网友关注视频

广州早晨 2019 山西一高中班主任带学生骑行1800公里去上海

这四首励志歌曲,送给为梦起航的高考学子们,听完心潮澎湃!

男孩考上理想大学,却因为网瘾休学在家,高中班主任上门劝导

2019全国高考志愿填报攻略 第50集 天津市高考历史三年本科录取排名

女儿高考作文只得5分,怎料妈妈一听作文题目,瞬间懂了

知道班里的高考成绩后,山东班主任气吐血了

高考体育四项生的日常训练——深蹲移动跳:发展膝关节,踝关节力量。

他高考作文仅得6分,总分428分,被985高校录取,却被导师拒绝!

最新高考数学全国2卷第12题视频解读

探秘历史 第二季 第233集 考英语用来睡觉,结果仍是高考状元,如今她怎么样了?

高考帮:这!就是专业 第8集 安徽师范大学

体育大杂烩 第2217集 太厉害!马龙登上全国高考作文题

组合名师余老师在线讲解2019高考数学全国3卷理科16题

星闻乐坊 第1272集 张杰的一首歌成了高考神曲

2019高考数学全国2卷理科第16题视频讲解及答案

评测今年的高考语文卷

体育生参加高考,太猛了,第一名是飞起来了吗?

探秘历史 第二季 第211集 此人高考数学考了0分,因作文写3句话被重点大学录取

2019年高考数学全国2卷理科第4题讲解及答案

印度美术高考美术联考,考前培训班

张雪峰高考志愿填报指南 第15集 高考填报志愿,想学电子信息类专业,推荐报这六所高校,不出错

招办面对面 第2集 中国科学技术大学

凤凰县高级中学高考试卷分析专题教研会

amc传媒音乐影像 第一季 第598集 西安原创乐队走进英泰青卓 用音乐助力高考学子

老马讲高考真题第九季2018年高考地理新课标一卷第37题

创艺第二届:2019届高考录取表彰大会暨“核桃音乐节”合影——你只管努力,剩下的交给创艺

高职高考数学公式

2019年高考试卷解析,数学套路不好用了

2019高考·语文试题有亮点 凸显时代主题 厚植家国情怀

这!就是专业 第18集 中国科学技术大学