来自:查字典高考网 2008-04-21
北师大天津附中 潘长虹
计数与概率问题在近几年的高考中都加大了考查的力度,每年都以解答题的形式出现。在复习过程中,由于知识抽象性强,学习中要注重基础知识和基本方法,不可过深,过难。复习时可从最基本的公式,定理,题型入手,恰当选取典型例题,构建思维模式,造成思维依托和思维的合理定势。
另外,要加强数学思想方法的训练,这部分所涉及的数学思想主要有:分类讨论思想、等价转化思想、整体思想、数形结合思想,在概率和概率与统计中又体现了概率思想、统计思想、数学建模的思想等。在复习中应有意识用数学思想方法指导解题,不可就题论题,将问题孤立,片面强调单一知识和题型。
能力方面主要考查:运算能力、逻辑思维能力、抽象思维能力、分析问题和解决实际问题的能力。在高考中本部分以考查实际问题为主,解决它不能机械地套用模式,而要认真分析,抽象出其中的数量关系,转化为数学问题,再利用有关的数学知识加以解决。
例1. 一次掷两颗骰子,求点数和恰为8这一事件A的概率。
分析:这实际上是一个等可能事件的概率。掷两个骰子出现的基本结果如下表:
解:表中基本结果36个,而点数为8的有5个,故:P(A)=-
评述:本题可归结为掷骰子问题,通过对掷骰子情况的研究得出各种概率数学模型,体现了数学建模的思想:
(1)、投掷一颗均匀的骰子,研究出现各种点的情况,这是等可能事件的概率,各点出现的概率为1/6。
(2)、同时投掷两颗均匀的骰子,研究出现各种点的情况,可列一表格或用坐标系表示。
(3)、同时投掷n颗均匀的骰子,研究出现各种点的情况,可看作n次独立事件的概率。
例2.同时掷四枚均匀硬币,求:
(1)恰有两枚正面朝上的概率;
(2)至少有两枚正面朝上的概率。
分析:因同时抛掷四枚硬币,可认为四次独立重复试验。
解: (1)问中可看作4次重复试验中,恰有2次发生的概率:
P4(2)=C42(-)2(1--)2=-=-
(2)问中,可考虑对立事件至多有一枚正面朝上
故P=1-P4(0)-P4(1)=1-C40(-)0(1--)4-C41(-)1(1--)3=-
评述:研究各种掷硬币的情况,抽象出其数学本质,再利用概率知识解决,这就是数学建模的过程。这一问题可推广到n枚均匀硬币同时投掷的情况。
【高考数学复习:数学思想在计数与概率中应用】相关文章:
[标签:数学,复习,高考]
张雪峰高考志愿填报指南 第28集 高考志愿分析,材料科学与工程专业,就业很一般,建议慎重选择
学渣儿子高考,英语选择题全选B!老师通报成绩的那一刻父亲懵了
沈阳音乐学院郎亦农教授的女高音高考曲目解析课程 第9集 《赛吾里麦》演唱讲解,音乐表现一定要自然流畅
高考前必听的5首励志歌曲,《Dream it possible》最能鼓舞人心!
探秘历史 第二季 第211集 此人高考数学考了0分,因作文写3句话被重点大学录取
他高考作文仅得6分,总分428分,被985高校录取,却被导师拒绝!
乾坤已定,组合解读2019高考数学全国3卷理科18题,你是黑马吗?
张雪峰高考志愿填报指南 第15集 高考填报志愿,想学电子信息类专业,推荐报这六所高校,不出错
探秘历史 第二季 第479集 河南叛逆高考生,写下8000字批判作文,现状如何?
广州早晨 2019 山西一高中班主任带学生骑行1800公里去上海
衍声高考琴行2019高本硕学生暑假音乐会 张俊瀚《陕北民歌主题变奏曲》《阿根廷舞曲》第三乐章
美术联考用纸上海考试模拟试卷纸高考统考纸 4k水粉纸素描纸 速写纸卡纸美术模拟测试试卷纸 美术考试专用纸