全国站

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

资    源
  • 资    源
当前位置:查字典高考网>高中频道>竞赛联赛知识>高阶等差数列

高阶等差数列

来自:查字典高考网 2009-08-29

高阶等差数列

一、基本知识

1.定义:对于一个给定的数列{an},把它的连结两项an+1与an的差an+1-an记为bn,得到一个新数列{ bn},把数列bn你为原数列{an}的一阶差数列,如果cn=bn+1-bn,则数列{cn}是{an}的二阶差数列依此类推,可得出数列{an}的p阶差数列,其中p?N

2.如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列

3.高阶等差数列是二阶或二阶以上等差数列的统称

4.高阶等差数列的性质:

(1)如果数列{an}是p阶等差数列,则它的一阶差数列是p-1阶等差数列

(2)数列{an}是p阶等差数列的充要条件是:数列{an}的通项是关于n的p次多项式

(3) 如果数列{an}是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式

5.高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基本方法有:

(1)逐差法:其出发点是an=a1+

(2)待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得

(3)裂项相消法:其出发点是an能写成an=f(n+1)-f(n)

(4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的

二、例题精讲

例1.数列{an}的二阶差数列的各项均为16,且a63=a89=10,求a51

解:法一:显然{an}的二阶差数列{bn}是公差为16的等差数列,设其首项为a,则bn=a+(n-1)16,于是an= a1+

=a1+(n-1)a+8(n-1)(n-2)

这是一个关于n的二次多项式,其中n2的系数为8,由于a63=a89=10,所以

an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658

解:法二:由题意,数列{an}是二阶等差数列,故其通项是n的二次多项式,又a63=a89=10,故可设an=A(n-63)(n-89)+10

由于{an}是二阶差数列的各项均为16,所以(a3-a2)-(a2-a1)=16

即a3-2a2+a1=16,所以

A(3-63)(3-89)+10-2[A(2-63)(2-89)+10]+A(1-63)(1-89)+10=16

解得:A=8

an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658

例2.一个三阶等差数列{an}的前4项依次为30,72,140,240,求其通项公式

解:由性质(2),an是n的三次多项式,可设an=An3+Bn2+Cn+D

由a1=30、a2=72、a3=140、a4=240得

解得:

所以an=n3+7n2+14n+8

例3.求和:Sn=1322+2432++n(n+2)(n+1)2

解:Sn是是数列{n(n+2)(n+1)2}的前n项和,

因为an=n(n+2)(n+1)2是关于n的四次多项式,所以{an}是四阶等差数列,于是Sn是关于n的五次多项式

k(k+2)(k+1)2=k(k+1)(k+2)(k+3)-2k(k+1)(k+2),故求Sn可转化为求

Kn=和Tn=

k(k+1)(k+2)(k+3)=[ k(k+1)(k+2)(k+3)(k+4)-(k-1) k(k+1)(k+2)(k+3)],所以

Kn==

Tn==

从而Sn=Kn-2Tn=

例4.已知整数列{an}适合条件:

(1)an+2=3an+1-3an+an-1,n=2,3,4,

(2)2a2=a1+a3-2

(3)a5-a4=9,a1=1

求数列{an}的前n项和Sn

解:设bn=an+1-an,Cn=bn+1-bn

Cn=bn+1-bn= (an+2-an+1)-( an+1-an)=an+2-2an+1+an=(3an+1-3an+an-1) -2an+1+an=an+1-2an+an-1

=Cn-1 (n=2,3,4,)

所以{ Cn}是常数列

由条件(2)得C1=2,则{an}是二阶等差数列

因此an=a1+

由条件(3)知b4=9,从而b1=3,于是an=n2

例5.求证:二阶等差数列的通项公式为

证明:设{an}的一阶差数列为{bn},二阶差数列为{cn},由于{an}是二阶等差数列,故{cn}为常数列

又c1=b2-b1=a3-2a2+a1

所以

例6.求数列1,3+5+7,9+11+13+15+17,的通项

解:问题等价于:将正奇数1,3,5,按照第n个组含有2n-1个数的规则分组:

(1)、(3,5,7)、(9,11,13,15,17), 然后求第n组中各数之和an

依分组规则,第n组中的数恰好构成以2为公差的项数为2n-1的等差数列,因而确定了第n组中正中央这一项,然后乘以(2n-1)即得an

将每一组的正中央一项依次写出得数列:1,5,13,25,这个数列恰为一个二阶等差数列,不难求其通项为2n2-2n+1,故第n组正中央的那一项为2n2-2n+1,从而

an=(2n-2n+1)(2n-1)

例7.数列{an}的二阶差数列是等比数列,且a1=5,a2=6,a3=9,a4=16,求{an}的通项公式

解:易算出{an}的二阶差数列{cn}是以2为首项,2为公比的等比数列,则cn=2n,

{an}的一阶差数列设为{bn},则b1=1且

从而

例8.设有边长为1米的正方形纸一张,若将这张纸剪成一边长为别为1厘米、3厘米、、(2n-1)厘米的正方形,愉好是n个而不剩余纸,这可能吗?

解:原问题即是是否存在正整数n,使得12+32++(2n-1)2=1002

由于12+32++(2n-1)2=[12+22++(2n)2]-[22+42++(2n)2]=随着n的增大而增大,当n=19时=912910000,当n=20时=1066010000

故不存在

例9.对于任一实数序列A={a1,a2,a3,},定义DA为序列{a2-a1,a3-a2,},它的第n项为an+1-an,假设序列D(DA)的所有项均为1,且a19=a92=0,求a1

解:设序列DA的首项为d,则序列DA为{d,d+1,d+2,},它的第n项是d+(n-1),因此序列A的第n项

显然an是关于n的二次多项式,首项等比数列为

由于a19=a92=0,必有

所以a1=819

【高阶等差数列】相关文章:

高中数学竞赛大纲(修订稿)

高中数学竞赛大纲(修订稿)

高校自主招生政策将微调

新高一系列:高一新生通过五步学好数学

我谈高中数学学习方法

高二物理:圆周运动

高一新生学数学注意什么

谈高中数学的学习方法

高中生物学的学习方法

等差数列与等比数列

[标签:数列]

网友关注视频

体育大杂烩 第2217集 太厉害!马龙登上全国高考作文题

盘点今年最难的高考数学题

老师好:这大概是高考前所有班主任都会干的事,取消一切副课!

老马讲高考真题第九季2018年高考地理新课标一卷第37题

高中数学必修5 高考数列选填真题技巧秒杀讲解

凤凰县高级中学高考试卷分析专题教研会

amc传媒音乐影像 第一季 第598集 西安原创乐队走进英泰青卓 用音乐助力高考学子

如何制作100万层的酥皮糕点?推算过程像数学高考题

广州早晨 2019 山西一高中班主任带学生骑行1800公里去上海

加油吧考生:2019高考咨询大直播 第43集 科学填报志愿 规划精彩人生

2019高考·语文试题有亮点 凸显时代主题 厚植家国情怀

创艺第二届:2019届高考录取表彰大会暨“核桃音乐节”合影——你只管努力,剩下的交给创艺

高考同学看过来,难度系数三颗星的奥数1

2019年高考数学全国2卷理科第4题讲解及答案

爆笑班主任 第一季 第221集 高考结束学生有多疯狂?山东王老师疯狂吐槽

视频|2019全国高考今日开考: 语文特级教师评析上海卷高考作文

这!就是专业 第15集 中国矿业大学——数学专业

高考政治一轮:《经济生活》第九课(社会主义市场经济)练习

这四首励志歌曲,送给为梦起航的高考学子们,听完心潮澎湃!

高考阅卷名师给考生的高考作文密训课 第5集 高考作文审题实操方法精讲(三)

男孩考上理想大学,却因为网瘾休学在家,高中班主任上门劝导

你高考成绩高吗?这道题目怎能成立?高难度奥数,能不能把你难住

学渣男高考英语全写B,老师给老爸说成绩,老爸直接听懵了!

张雪峰高考志愿填报指南 第28集 高考志愿分析,材料科学与工程专业,就业很一般,建议慎重选择

探秘历史 第二季 第233集 考英语用来睡觉,结果仍是高考状元,如今她怎么样了?

最新高考数学全国2第12题视频讲解及答案

【高考英语】七选五解析,不算太难

良心推荐:2019高考数学全国3卷理科12题讲解,附答案

高考阅卷名师给考生的高考作文密训课 第3集 高考作文审题实操方法精讲(一)

一站到底:高考语文老师上台,穿长衫说Rap,全场笑翻了!