全国站

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

资    源
  • 资    源
当前位置:查字典高考网>高考总复习>高考数学复习方法>新课标版2011年高考考试大纲——数学(理)

新课标版2011年高考考试大纲——数学(理)

来自:查字典高考网 2011-03-08

Ⅰ 考试性质

普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,高考应具有较高的信度、效度,必要的区分度和适当的难度.

Ⅱ 考试内容

根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容.

数学科的考试,按照考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养.

数学科考试,要发挥数学作为主要基础学科的作用,要考查考生对中学的基础知识、基本技能的掌握程度,要考查对数学思想方法和数学本质的理解水平,要考查进入高等学校继续学习的潜能.

一、考核目标与要求

1.知识要求

知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.

各部分知识整体要求及其定位参照《课程标准》相应模块的有关说明.

对知识的要求依次是了解、理解、掌握三个层次.

(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.

(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.

(3)掌握:要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.

这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.

2.能力要求

能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.

(1)空间想像能力:能根据条件作出正确的图形,根据图形想像出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.

空间想像能力是对空间形式的观察、分析、抽象的能力.主要表现为识图、画图和对图形的想像能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想像主要包括有图想图和无图想图两种,是空间想像能力高层次的标志.

(2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某一观点或作出某项结论.

抽象概括能力就是从具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.

(3)推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成,论证是由已有的正确的前提到被论证的结论正确的一连串的推理过程.推理既包括演绎推理,也包括合情推理.论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.

中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性初步的推理能力.

(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.

运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.

(5)数据处理能力:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.

数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.

(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.

(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.

创新意识是理性思维的高层次表现.对数学问题的观察、猜测、抽象、概括、证明,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.

3.个性品质要求

个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.

4.考查要求

数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.

(1)对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.

(2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度.

(3)对数学能力的考查,强调以能力立意,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能.

对能力的考查要全面考查能力,强调综合性、应用性,并要切合学生实际。对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性。对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是运用概率统计的基本方法和思想解决实际问题的能力。

(4)对应用意识的考查主要采用解决应用问题的形式.命题时要坚持贴近生活,背景公平,控制难度的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.

(5)对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.

数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.

二、考试范围与要求

本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列2的内容;选考内容为《课程标准》的选修系列4的几何证明选讲、坐标系与参数方程、不等式选讲等3个专题.

(一)必考内容与要求

1.集合

(1)集合的含义与表示

① 了解集合的含义、元素与集合的属于关系.

② 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.

(2)集合间的基本关系

① 理解集合之间包含与相等的含义,能识别给定集合的子集.

② 在具体情境中,了解全集与空集的含义.

(3)集合的基本运算

① 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.

② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集.

③ 能使用韦恩(Venn)图表达集合的关系及运算.

【新课标版2011年高考考试大纲——数学(理)】相关文章:

2008年高考数学复习:解析几何专题热点指导

2011年高考数学复习方法:备考立体几何注意事项

2006年高考北京卷考试说明数学(文)

新课标版2011年高考考试大纲——数学(文)

2009年高考名师手记之:数学篇 理科(三)

如何提高2010年高考数学第一轮复习的效率

高考数学复习:2010年高三数学第一轮复习资料汇总

高考数学冲刺:复习错题效率高

高考数学复习:2009年高考数学命题预测及名师指导

2010重点中学老师指点高考数学复习:抓住高分题

[标签:高考,数学]

网友关注

高考语文复习:“三板块”学习要均衡

2010高考语文古诗词常见意象总结

高三理科生语文学习:“七步法”

2010高考:诗歌鉴赏题万能答题模式例说

高考语文二轮复习:文言文信息筛选

2009年全国各地重点高中语文学科精选试题汇编

2010年高考语文基础知识分类练习(5份)

高考诗歌鉴赏题万能答题模式例说:分析句意型

2010高考语文指导:古诗词应考技巧

2010高考备考最受欢迎的纠错笔记:语文篇

高考诗歌鉴赏题万能答题模式例说:分析意境型

09语文阅卷老师不吐不快 基本功如何提高

高三语文最后冲刺盘点:字音部分满分秘诀

2010年高考,多个科目内容变化较大

高考诗歌鉴赏题万能答题模式例说:炼字型

高考诗歌鉴赏题万能答题模式例说:分析主旨型题

高考语文二轮复习:文言文虚词用法

从高考真题中解析语文病句考点题

高考语病考点题怎样轻松拿满分

高考诗歌鉴赏题万能答题模式例说:分析技巧型题

高考语文必考题型:扩展语句

2010年高考语文复习:高分要从平时积累

高考诗歌鉴赏题万能答题模式例说:分析构思型

2010年上海考试语文复习5个重点要抓牢

高三语文二轮复习13项重要知识点分类练习

2010年北京高考语文试题预测及复习建议

语文:五年高考、三年联考试题分章练习(17份)

高考语文二轮复习:古代诗歌鉴赏答题技巧

高考语文二轮复习:文言文句式例解

高考语文万能答题模式:应试答题

网友关注视频

2019年高考数学全国2卷理科第4题讲解及答案

探秘历史 第二季 第211集 此人高考数学考了0分,因作文写3句话被重点大学录取

体育生参加高考,太猛了,第一名是飞起来了吗?

爆笑班主任 第一季 第220集 高考前最后一只视频,山东王老师揭秘高考的秘密

2019全国高考志愿填报攻略 第50集 天津市高考历史三年本科录取排名

儿子高考英语没考,上了西京交大,老爸忍不了:复读!上清华!

amc传媒音乐影像 第一季 第598集 西安原创乐队走进英泰青卓 用音乐助力高考学子

视频|2019全国高考今日开考: 语文特级教师评析上海卷高考作文

凤凰县高级中学高考试卷分析专题教研会

招办面对面 第2集 中国科学技术大学

张雪峰高考志愿填报指南 第15集 高考填报志愿,想学电子信息类专业,推荐报这六所高校,不出错

这!就是专业 第43集 河北经贸大学—计算机科学与技术专业

爆笑班主任 第一季 第221集 高考结束学生有多疯狂?山东王老师疯狂吐槽

这!就是专业 第36集 河北经贸大学——数学专业

高考帮:招办面对面 第55集 上海视觉艺术学院

高级中学高考试卷分析专题教研评比活动

小品:马云被宋小宝调侃当年数学高考考一分!

外国数学老师挑战中国高考题,一顿“凶猛操作”下来,被虐惨!

广州早晨 2019 山西一高中班主任带学生骑行1800公里去上海

创艺第二届:2019届高考录取表彰大会暨“核桃音乐节”合影——你只管努力,剩下的交给创艺

高职高考数学公式

优秀!英语数学双满分,广西“最牛”高考状元730分刷新最高纪录

凤凰县高级中学高考试卷分析专题教研会

这!就是专业 第47集 江苏理工学院

印度美术高考美术联考,考前培训班

高考阅卷名师给考生的高考作文密训课 第3集 高考作文审题实操方法精讲(一)

看懂图片,你也会做高考地理题,解析2019年高考文综地理4

一站到底:高考语文老师上台,穿长衫说Rap,全场笑翻了!

2019高考·语文试题有亮点 凸显时代主题 厚植家国情怀

组合名师余老师在线讲解2019高考数学全国3卷理科16题